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1 Introduction 

The primary objective of the MECH458 project is to design, program, and optimize the software 

and control framework for a conveyor belt sorting system. This system is powered by an 

Atmega2560 microcontroller (MCU), which processes inputs from a range of sensors, and 

controls both a DC motor and a stepper motor. Based on data from the sensor array, the software 

must accurately identify the material of each object and sort it into the correct bin as efficiently 

as possible. Below is an overview of the system requirements and the role of each major 

hardware component in this project. [1] 

 

I. A DC motor is used to actuate the conveyor belt and move objects through the sorting 

system. 

II. An optical sensor informs the system when an object is in front of the reflective sensor. 

III. A reflective sensor determines the material based on pre-calibrated visual characteristics. 

IV. An exit sensor informs the system when an object has reached the end of the conveyor 

belt. 

V. A stepper motor is used to rotate the sorting bins to the correct material. 

VI. A hall-effect sensor is used to initialize the stepper motor to a home location. 
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Figure 1: System Overview [1] 

When the hardware components are integrated with the appropriate software and control logic, 

the sorting system can accurately scan, identify, and sort each object placed on the conveyor belt. 

It should be noted that Figure 1 above contains a ferromagnetic sensor which is not used in the 

current set up. 

2 System Documentation 

This section describes each software and hardware algorithm as well as how they are connected 

to the performance specifications. 
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2.1 System Tasks 

The system is designed to transport an unspecified quantity of items along a conveyor belt, 

identify each item type, and sort it into the correct compartment within a tray. The items to be 

sorted include white Delrin, black Delrin, aluminum, and steel. This process must be completed 

for 48 items in under 60 seconds. Along with sorting, the system is required to perform two 

additional functions. 

First, when the user sends a pause signal (through the use of a push button), the system will stop 

and display the count of each item that has been fully or processed as well as the count of pieces 

remaining on the belt. An item is considered fully processed once it has been sorted into the 

appropriate bin, while a partially processed item is one that has passed the reflective sensor but 

has not yet been sorted into a bin. Second, when a ramp-down signal is received (again from a 

push button), the system will complete processing all items currently on the conveyor, then halt 

and display the total number of each fully processed item. 

2.2 System Diagram 

This section presents visual representations of the software and hardware control logic utilized in 

this project. Flow diagrams include action and decision blocks to illustrate the progression 

through the implemented control logic, along with interrupt blocks that indicate points where the 

control flow is intentionally paused or altered. 
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2.2.1 High Level Diagram 

Figure 2 shows the high-level flow chart for the algorithm that is implemented in the system. 

 

Figure 2: High Level Diagram 
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The system starts when the reset button is pressed on the MCU, initializing all required 

parameters and functions for implementation. Next, it enters the 'Stepper Initialization Routine,' 

detailed in Section 2.2.2. After that, the system continuously checks if the optical sensor is 

active. When it is, the 'Optical/Reflectivity Sensor Routine' (Section 2.2.3) is initiated. Then, the 

exit sensor is monitored continuously, and if active, the system checks if the stepper motor is 

rotating. If it is, the buffer flag is set to 1; otherwise, the 'Exit Sensor Routine' (Section 2.2.4) 

begins. 

The system then verifies if the sorted item is the last one in the linked list. If true, it returns to the 

top of the process to check the optical sensor. If not, it continues to monitor the exit sensor. 

During sorting, two additional functions may be required. First, the pause function: when the 

pause button is pressed, the code enters the 'Pause System Routine' (Section 2.2.5). Second, the 

ramp function is activated if the ramp-down button is pressed. This triggers an interrupt-based 

timer, and once complete, sets the motor to brake and displays the current and sorted item types 

on the LCD. 

 

2.2.2 Stepper Initialization Routine 

Figure 3 Shows the Stepper Initialization Routine. 
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Figure 3: Stepper Initialization Routine Diagram 

 

This routine starts after initializing the necessary parameters and functions for the 

implementation. It first checks whether the hall effect sensor is active. If not, the stepper motor 

rotates one step counterclockwise. If the sensor is active, the current position of the stepper is 

marked as black. 

2.2.3 Optical/Reflectivity Sensor Routine 

Figure 4 shows the Optical/Reflectivity Sensor Routine 
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Figure 4: Optical/Reflectivity Sensor Routine Diagram 
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In this routine, an ADC conversion is initiated upon entry. Then, the routine continuously checks 

if the ADC interrupt is active, indicating the completion of the conversion. The ADC output 

represents the reflective index (RFI) of the item. Once complete, the value is stored if it is lower 

than the current minimum RFI. Next, the optical sensor is checked; if it is active, another ADC 

conversion starts. If not, a new link is created in the linked list, using the current minimum RFI 

to identify the item and storing that ID in the new link. 

2.2.4 Exit Sensor Routine 

Figure 5 Shows the Exit Sensor Routine. 
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Figure 5: Exit Sensor Routine Diagram 
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Upon entering this routine, the conveyor belt stops, and the buffer flag is reset to zero. A link is 

then dequeued from the list, its exit ID is retrieved, the link is released, and the memory is freed. 

The system checks if the exit ID matches the stepper motor's current position. If it does, the 

conveyor belt restarts, and the item is dropped. If not, the rotation flag is set to one, and the tray 

begins rotating to align with the exit ID. 

During rotation, the system monitors whether the stepper has traversed the specified drop-ahead 

value. If not, rotation continues; if so, the conveyor belt turns on, and the item is dropped. The 

stepper motor keeps rotating until it reaches the exit ID, at which point the stepper’s position is 

updated to the target value, and the rotation flag is cleared. 

After this, the system checks if the buffer flag is set to 1, indicating that an item passed the exit 

sensor during the rotation. If true, the routine restarts. If false, the routine exits. 

2.2.5 Pause System Routine 

Figure 6 shows the Pause System Routine. 
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Figure 6: Pause System Routine Diagram 

When this routine begins, the conveyor belt pauses, and the LCD displays the current counts of 

each type that have been fully processed and total scanned items on the belt. The system then 

checks if the pause button is active. If it is not, the LCD continues to display the object counts. If 

the pause button is active, the conveyor belt resumes, and the code returns to its position just 

before the pause button was first pressed. 

2.3 Software and Hardware Algorithm 

This section offers a comprehensive overview of the software and hardware control logic 

implemented in this project. It begins by detailing the control logic for each state within the state 
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machine. Next, an in-depth explanation of each function utilized in the state machine is provided. 

Finally, the section concludes with a description of each Interrupt Service Routine (ISR) and the 

corresponding sensors. 

2.3.1 System States 

This section provides detailed explanations of the algorithms and logic implemented in each of 

the four states of the state machine. 

2.3.1.1 Polling Stage 

Figure 7 shows the code used in the Polling State of the state machine 

 

Figure 7 Overview of Polling Stage 

The polling stage serves as the foundation of the state machine in this project. During variable 

declaration, the system's state is initialized to 0, placing it in the polling stage until an interrupt 

occurs. When the interrupt is triggered, the state variable is updated to the corresponding stage, 
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which is then entered upon returning to the switch statement. After completing the necessary 

stage, the state variable is reset to 0, and the polling stage logic is executed again. 

2.3.1.2 Bucket Stage 

Figures 8-10 detail the code for the Bucket State. 

 

Figure 8 Bucket Stage Code 1 
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Figure 9 Bucket Stage Code 2 
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Figure 10 Bucket Stage Code 3 

The bucket stage is activated when an object triggers the exit sensor (EX). The Interrupt Service 

Routine (ISR) checks if a rotation is in progress. If so, a buffer flag is set to 1, indicating that an 

object passed the exit sensor while the stepper motor is rotating. 

Upon entering the bucket stage, the buffer flag is reset to 0 to signal that the object passing the 

exit sensor is now being processed. Next it acquires the size of the linked list, as different 

operations are required if there are less that 4 links in the list. Each case is how many links are in 

the list 1, 2, 3 and default is entered for 4 or more.  
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For case 1, the head is examined, if the value stored is the same as the previous value, the belt is 

started and the head is dequeued, set to Exit_ID and freed. If the head is not the same as the 

previous piece, the head is dequeued, assigned to Exit_ID, and freed. Next the lookup table 

stepperActions is called, taking in the Exit_ID and the current stepper position as inputs and 

rotating to the correct bin for sorting. After sorting the piece, the sortedCount and scannedCount 

for that piece is incremented and decremented, Paused is set to 0 as the belt is now rotating, and 

stepperPos is set to Exit_ID. 

Case 2 has the potential for a continuous 180 degree rotation, therefore the process slightly 

differs to case 1. A new variable thisDir is introduced to determine the direction of rotation for 

the current piece. A second variable nextDir is set by checking the next piece in the queue and 

determining its rotation direction. The two previously mentioned variables are determined by 

passing a starting position and target position to a lookup table (nextDirection) that returns an 

integer. If they are determined to be the same in the rotation function, the system will attempt to 

drop both during a 180 degree rotation. Similarly to case 1, stepperActions is called to rotate the 

stepper. After the rotation, if dropDone_flag is non zero, then an additional piece was 

successfully dropped in a continuous 180 degree rotation, the second link must be dequeued to 

ensure the list remains in sequence. 

Case 3 is similar to case 2 and has the potential for either a continuous 180 or 270 degree 

rotation. In addition to variables thisDir and nextDir, a third variable nextnextDir is introduced to 

determine the direction of rotation between the 2nd and 3rd piece. If thisDir is equal to nextDir 

and nextnextDir a 270 degree rotation can be completed and stepperActions2 is called to 
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complete the rotation. Otherwise, the same process as case 2 follows, and an additional link must 

be dequeued for every additional drop that was made to maintain the queue sequence.  

The default case is similar to case 3, but has the potential for a continuous 360 degree rotation. 

Therefore, in addition to variables thisDir, nextDir and nextnextDir, a fourth variable 

nextnextnextDir is introduced to determine if the rotation between the 3rd and 4th piece. Next, if 

thisDir is equal to nextDir, nextnextDir and nextnextnextDir, stepperActions3 is called as a 

continuous 360 degree rotation can be completed. The remainder is the same as case 3. 

Lastly, the buffer flag is checked. If it is set to 1, this means that another object passed the exit 

sensor while the stepper motor was rotating. In this case, the state remains in the bucket stage to 

process the new item. If the buffer flag is 0, the state is reset to 0, and the system returns to the 

polling stage. 

2.3.1.3 Pause State 

Figure 11 shows the code used in the Pause State. 
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Figure 11 Code for Pause Stage 

The paused stage is triggered when the pause button is pressed, activating an interrupt that 

changes the state of the paused flag. If the system is currently active (paused = 0), the ISR sets 

the paused flag to 1. If the system is already paused, the ISR toggles the paused flag to 0. 

If the paused flag is set to 0, the DC motor is stopped, and the system continuously displays the 

number of partially sorted and fully sorted items on the LCD. This display continues until the 

paused flag is reset to 0. Once the while loop is exited, the conveyor belt is restarted, and the 

system returns to the polling state by setting the system state to 0. 

2.3.2 Functions 

This section provides a comprehensive description of all the functions implemented in the state 

machine. 
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2.3.2.1 Home() 

Figure 12 contains code for the home function 

 

Figure 12 Home Function Code 

The home function is used to reset the stepper motor to its home position. The loop checks if the 

Hall Effect sensor is high, indicating the home position has not been reached. While the location 

is not home, it rotates the stepper motor by one step in the CCW direction until the home 

position is reached. Once the home position is reached, the stepper then rotates another 8 steps to 

center the end of the conveyor belt on the bin, and stepperPos is set to 0 indicating the black bin 

is at the end of the conveyor belt. 

2.3.2.2 mTimer(int count) 

The code for the standard timer function is shown in Figure 13. 
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Figure 13 code for mTimer 

The mTimer function is the standard timer used throughout the project and is used to occupy the 

processor in intervals of milliseconds which is controlled by the input argument “count”. The 

timer prescaler is set to 8 so the timer frequency is 𝑓!"#$% =
&[()*]

&
= 1[𝑀𝐻𝑧]. Furthermore, the 

value stored in OCR1A is equal to 1000, resulting in a timer length of 𝑡!"#$% =
,---
,[()*]

= 0.001𝑠. 

The while loop executes continuously until the timer has reached the value stored in OCR1A (ie 

one millisecond has passed). Once reached, the interrupt flag is cleared, and the loop variable is 

incremented. Therefore, the period occupied by the processor can be controlled using the 

variable “count”. 

2.3.2.3 PWM() 

Figure 14 contains code for the PWM functionality. 
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Figure 14 Code for PWM 

The PWM function was designed to keep the main function of the project clean and organized. It 

simplifies the process of setting up the required registers by setting the necessary bits, allowing 

the main function to focus on higher-level logic. To control the DC motors using PWM, the 

function configures the system to operate in fast PWM mode with a top value of 0xFF (the 

maximum value for the register). The PWM output pin (OC0A) is cleared on a compare match 

and is set to 0x00 at the bottom, enabling efficient adjustment of the PWM duty cycle by 

modifying the value stored in the OCR0A register. Furthermore, a pre-scaler of 8 is used such 

that the frequency of the PWM is calculated to be: 

𝑓./( =
𝑓012

𝑁 ∗ 256 =
8[𝑀𝐻𝑧]
64 ∗ 256 = 488𝐻𝑧 

As was specified by the lab technician. Lastly, given that the period, T, of the PWM is 2.05ms, 

the duty cycle of the PWM can be calculated using: 

𝐷𝐶 =
𝑡
𝑇 

Where t is the time taken to reach the value stored in OCR0A. Therefore, for a required duty 

cycle, the value required to be set in OCR0A can simply be calculated as t = DC * T. 
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2.3.2.4 rampTimer() 

Figure 15 contains code for the rampTimer 

 

Figure 15 Code for rampTimer 

The rampTimer function is called from the ramp-down button ISR and initializes a timer which 

throws an interrupt upon reaching the value stored in OCR3A. The timer frequency is set using a 

prescaler of 1024 and thus is 𝑓!"#$% =
&[()*]
,-34

= 7.8125[𝑘𝐻𝑧]. The value stored in OCR3A is set 

to 35000, resulting in a timer length of 𝑡!"#$% =
56---

7.&,36[2)*]
= 4.48[𝑠]. When the timer reaches 

the value stored in OCR3A, the output compare interrupt is thrown (TIMER3_COMPA_vect) 

and is handled by its respective ISR.  

2.3.2.5 stepperTimer(int count) 

Figure 16 contains code for the stepperTimer 
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Figure 16 Code for stepperTimer 

The stepperTimer function configures and uses Timer/Counter 4 to create a time delay, which is 

typically used for controlling the stepper motor's timing. First, it sets the timer to operate in 

"Clear Timer on Compare Match" (CTC) mode by configuring the relevant bits in the 

Timer/Counter Control Register 4 (TCCR4B). This mode ensures that the timer resets to zero 

each time it reaches a value specified in the output compare register, OCR4A. The function then 

loads the value of count into OCR4A, determining the point at which the timer will trigger an 

interrupt. The timer counter is reset to zero using TCNT4 set to 0x0000, ensuring the timer starts 

from the beginning. To ensure that any previous interrupt flags are cleared, the function sets the 

interrupt flag for the compare match in the Timer/Counter Interrupt Flag Register (TIFR4). It 

then enters a loop, constantly checking the interrupt flag. The loop will continue until the 

compare match interrupt flag is set, indicating that the timer has reached the value specified in 

OCR4A. Once the flag is set, the function exits the loop and completes its execution. This setup 

allows for precise control over the timing of the stepper motor's movements, based on the count 

value. 
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2.3.2.6 stepper_180() 

Figure 17 contains code used to rotate the stepper motor 180 degrees. 

 

Figure 17 Code for stepper180 
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This function iterates for the specified number of steps in either positive or negative increments, 

depending on the direction set by the global variable curDir. The iteration takes place through 

both the motor control array and the motor acceleration array. The global variable curState tracks 

the index of the motor control array, ensuring that the correct step is output to PORTA for the 

motor. The motor control array is designed for full-step control, where two adjacent coils are 

energized for each step. This method increases the torque compared to the wave-drive method 

used in Lab 4. 

The variable i tracks the number of steps the stepper motor has completed during the rotation and 

is used to determine the relative position of the tray. A pre-drop feature was introduced in which 

pieces are dropped when the stepper motor has traversed a certain number of steps, allowing the 

motor to reach the correct position just as the piece is placed on the sorting tray. This feature 

significantly improves the system's speed and efficiency. 

Additionally, the acceleration array provides pre-calculated delays between each step of the 

motor, which are passed as inputs to the stepperTimer() function. The acceleration profile used is 

an s-curve, which was developed through extensive testing. The details of this testing and the 

resulting acceleration curve will be discussed in Section 5. 

2.3.2.7 stepperCCW_90() 

Figures 18-20 contain the code used to rotate the stepper CCW 90 degrees. 
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Figure 18 Code for stepperCCW_90 1 
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Figure 19 Code for stepperCCW_90 2 
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Figure 20 Code for stepperCCW_90 3 

This function iterates for the specified number of steps in negative increments. The iteration 

takes place through both the motor control array and the motor acceleration array. The global 

variable curState tracks the index of the motor control array, ensuring that the correct step is 

output to PORTA for the motor. The motor control array is designed for full-step control, where 

two adjacent coils are energized for each step. This method increases the torque compared to the 

wave-drive method used in Lab 4. 



34 

 

It first checks if the direction of rotation (thisDir) matches the next direction of rotation 

(nextDir). If they are the same, a 100 step, 180 degree rotation can be initiated to rotate to the 

second part while kicking off the first into its bucket. Timing is managed using either array90 or 

array180, depending on the state of bailout_Flag, which controls whether the loop exits early at 

iteration 49. Additional operations also include starting the conveyor belt at iteration 3, allowing 

the first part time to drop into the center of its bucket as the tray rotates. At iteration 32, 

Buffer_flag is checked, if it is a 1 then something is at the exit sensor and the double drop can 

continue, if 0 then the gap between pieces is determined to be too large and the bailout_Flag is 

set to 1 which indicates that the continuous rotation must be aborted. If no bailout occurs, the 

conveyor belt is started on iteration 40 to allow the second part to drop, additionally the 

dropDone_flag is set indicating a second drop has been made requiring an additional dequeue 

from the linked list. If thisDir did not match nextDir, the function executes a simpler 50 step 

iteration loop for a direct 90 degree rotation. The specifics of the continuous rotation algorithm 

are further discussed in section 3.1. 

Additionally, the acceleration array provides pre-calculated delays between each step of the 

motor, which are passed as inputs to the stepperTimer() function. The acceleration profile used is 

an s-curve, which was developed through extensive testing. The details of this testing and the 

resulting acceleration curve will be discussed in Section 5. 

2.3.2.8 stepperCW_90() 

Figure 21-23 contains the code used to rotate the stepper CW 90 degrees. 
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Figure 21 Code for StepperCW_90 1 
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Figure 22 Code for StepperCW_90 2 
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Figure 23 Code for StepperCW_90 3 

The only variation from the counter-clockwise stepper function is that this function decrements 

the curState variable such that the motor control array is traversed positively, resulting in a 

clockwise motion. All other logic remains identical and thus will not be re-stated. 

2.3.2.9 motorOn() 

Figure 24 contains the code used to turn the DC motor on. 
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Figure 24 Code for motorOn 

This function is designed to simply turn the conveyor belt on if 2 pieces of the same type are one 

after the other. It is one of the items in the stepperActions look up table and the program is sent 

here if the Exit_ID matches the current stepper position.  

2.3.2.10 stepperCCW_270() 

Figure 25 contains the code used to rotate the stepperCCW_270 degrees. 
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Figure 25 Code for stepperCCW_270 
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This function iterates for the specified number of steps in negative increments. The iteration 

takes place through both the motor control array and the motor acceleration array. The global 

variable curState tracks the index of the motor control array, ensuring that the correct step is 

output to PORTA for the motor. The motor control array is designed for full-step control, where 

two adjacent coils are energized for each step. This method increases the torque compared to the 

wave-drive method used in Lab 4. 

The switch statement handles timing based on the value of the bailout_flag. The bailout_flag is 

designed to be triggered in the event that the spacing between pieces is too large, which would 

cause an error on the drop, the same as discussed in the 90 degree rotation sction. After dropping 

the first piece, if by step 32 the buffer_flag has not been triggered, indicating the following piece 

is at the exit sensor, the bailout _flag is set to 1, the stepperTimer switches to array90 and only 

completes the 90 degree rotation before bailing out. The same process follows on step 82, if 

buffer_flag is 0, bailout_flag is set to 2 and the stepperTimer array is set to array180 indicating 

the sequence must bail out after the 180 degree rotation. If no bailout_flag is set, the stepper will 

complete the full 270 degree rotation, dropping all 3 pieces. 

After completing the drop of pieces on iteration 40 and 90, the dropDone_flag is increased, 

allowing the pieces to be dequeued from the linked list following the completion of the rotation, 

ensuring the queue remains intact.   

2.3.2.11 stepperCW_270() 

Figure 26 contains the code used to rotate the stepperCW_270 degrees. 
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Figure 26 Code for stepperCW_270 

The only variation from the counter-clockwise stepper function is that this function decrements 

the curState variable such that the motor control array is traversed positively, resulting in a 

clockwise motion. All other logic remains identical and thus will not be re-stated. 
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2.3.2.12 stepperCCW_360() 

Figures 27 and 28 contain the code used to rotate the stepperCCW_360 degrees. 

 

Figure 27 Code for stepperCCW_360 1 
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Figure 28 Code for stepperCCW_360 2 

This function iterates for the specified number of steps in negative increments. The iteration 

takes place through both the motor control array and the motor acceleration array. The global 

variable curState tracks the index of the motor control array, ensuring that the correct step is 

output to PORTA for the motor. The motor control array is designed for full-step control, where 

two adjacent coils are energized for each step. This method increases the torque compared to the 

wave-drive method used in Lab 4. 
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The switch statement handles timing based on the value of the bailout_flag. The bailout_flag is 

designed to be triggered in the event that the spacing between pieces is too large, which would 

cause an error on the drop. After dropping the first piece, if by iteration 32 the buffer_flag has 

not been triggered, indicating the following piece is at the exit sensor, the bailout _flag is set to 1, 

the stepperTimer switches to array90 and only completes the 90 degree rotation before bailing 

out. The same process follows on iteration 82, if buffer_flag is 0, bailout_is set to 2 and the 

stepperTimer array is set to array180 indicating the sequence must bail out after the 180 degree 

rotation. Additionally, on iteration 133, if buffer_flag is 0, bailout_flag is set to 3 and the 

stepperTimer array is set to array270 indicating the sequence must bail out after the 270 degree 

rotation. If no bailout_flag is set, the stepper will complete the full 360 degree rotation, dropping 

all 4 pieces. 

After completing the drop of pieces on iteration 40, 90 and 140 the dropDone_flag is increased, 

allowing the pieces to be dequeued from the linked list following the completion of the rotation, 

ensuring the queue remains intact.   

 

2.3.2.13 stepperCW_360() 

Figures 29 and 30 contain the code used to rotate the stepperCW_360 degrees. 
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Figure 29 Code for stepperCW_360 1 
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Figure 30 Code for stepperCW_360 2 

The only variation from the counter-clockwise stepper function is that this function decrements 

the curState variable such that the motor control array is traversed positively, resulting in a 

clockwise motion. All other logic remains identical and thus will not be re-stated. 

2.3.2.14 rotateStepper(int dir, int numSteps) 

Figure 31 contains the code used to rotate the stepper a given number of steps in either direction. 
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Figure 31 Code for rotateStepper 

The rotateStepper() function is responsible for controlling the stepper motor's rotation, either 

clockwise (CW) or counterclockwise (CCW), for a specified number of steps. The direction (dir) 

is passed as a parameter, where 0 represents clockwise rotation and 1 represents 

counterclockwise rotation. The function iterates through the number of steps (numSteps), 

changing the state of the motor at each step, and outputs the corresponding control signal to 

PORTA. Inside the function, the switch statement determines the motor's current state (curState) 
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and adjusts it based on the direction of rotation. There are four possible states (0 through 3) 

corresponding to the four step positions of the stepper motor. After each state change, the 

mTimer(15) function is called, introducing a 15-millisecond delay to allow the electromagnets to 

fully energize before proceeding to the next state. This process is repeated for the number of 

steps specified in numSteps, effectively rotating the stepper motor in the desired direction. The 

function provides precise control over the motor's stepping sequence, allowing for accurate 

positioning. 

2.3.3 Interrupt Service Routines (ISRs) 

2.3.3.1 Ramp Down State Interrupt Service Routine 

Figure 32 details the code for the Ramp Down State Interrupt Service Routine. 

 

Figure 32 Code for Ramp Down State Interrupt Service Routine 

This ISR is triggered when the ramp-down button is pressed, initiating the rampTimer() function. 

Upon pressing the active-high button, the ISR is entered. Once the button is released, the 

rampTimer() function is called, and the program resumes execution from its previous position in 

the code. 
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2.3.3.2 Pause State Interrupt Service Routine 

Figure 33 details the code for the Pause State Interrupt Service Routine 

 

Figure 33 Pause State Interrupt Routine 

This ISR is triggered when the active-low button is pressed, setting STATE to 2. Once the button 

is released, the system enters the pause state. 

2.3.3.3 Optical Sensor interrupt Service Routine 

Figure 34 details the code for the Optical Sensor Interrupt Service Routine. 

 

Figure 34 Optical Sensor Interrupt Service Routine 

This ISR is used to start an ADC conversion. The Global_min is set to 1023 and the line “ 

ADCSRA |= _BV(ADSC)” starts the ADC conversion. 

2.3.3.4 Exit Sensor Interrupt Service Routine 

Figure 35 details the code for the exit Sensor Interrupt Service Routine. 
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Figure 35 Exit Sensor Interrupt Service Routine 

This ISR is entered when the exit sensor detects an object. The conveyor belt is set to brake, and 

sets STATE to 1 sending it to the bucket stage. If it is, a buffer flag is increased to signal that an 

object passed the exit sensor. This flag is used to ensure that no item gets missed during sorting. 

Paused is set to 1 indicating the conveyor belt is now stopped.  

2.3.3.5 ADC Interrupt Service Routine 

Figure 36 details the code for the ADC Interrupt Service Routine.  
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Figure 36 ADC Interrupt Service Routine 

This ISR is used to set the reflective global minimum variable equal to the ADC result. The ISR 

is entered when an ADC conversion is completed, then checks if the ADC result is less than the 

global minimum. If this is true, the global minimum will be set as the ADC result. Then, the code 

checks if the OR sensor is active, meaning the object is still in front of it. If this is true, another 

ADC conversion is started using “ADCSRA |= _BV(ADSC)” and the logic is repeated. In the 
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reflective state, the global minimum is used to identify the material of the object. When the OR 

sensor is no longer active, the scanned count of the material is increased, and the link is 

enqueued to the linked list.  

2.3.3.6 Unexpected interrupt Handler 

Figure 37 details the code for the Unexpected Interrupt Handler. 

 

Figure 37 Unexpected interrupt Handler 

This ISR is triggered when an unexpected interrupt is received, initiating a system shutdown. 

Upon activation, the port controlling the DC motor is set to off, and the message "BADISRVect" 

is displayed on the LCD to indicate that this ISR has been entered. The program then enters a 

while(1) loop, ensuring that the ISR remains active until the system is manually reset by the user. 

2.3.3.7 Ramp Down Timer Interrupt Service Routine 

Figure 38 details the code for Ramp Down Timer Interrupt Service Routine.  
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Figure 38 Code for Ramp Down Timer Interrupt Service Routine 

This ISR is used to shut down the system and display the number of sorted objects for each 

material once the timer started in the function rampTimer() is complete. The ISR is entered once 

the rampTimer throws an output compare interrupt and subsequently displays the number of 

sorted objects for each material. The DC motor is first set to brake followed by power off. A 

while(1) is entered to ensure the ISR is not left without a user reset. 

2.4 Project Timeline 

Figure 39 shows the Project Timeline Chart where blue cells indicate time allocated to work on 

that item, and red cells indicate due dates.      
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Figure 39: Project Timeline Chart 
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2.5 Circuit Diagram 

Figure 40 shows the circuit diagram illustrating the connections between the systems hardware 

components.  

 

Figure 40: Circuit Diagram 
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3 System Performance Specifications 

3.1 Software optimization 

Throughout the project, the group reworked the overall code many times to improve logic, flow, 

and decrease runtime and complexity. The project required code that could handle many inputs 

and process lots of information to make decisions quickly. As such, we decided to make our code 

as efficient as possible before attempting to implement optimizations such as continuous loading 

or a “look ahead” feature. Early iterations of our code were pieced together from the labs, and 

included bulky stepper motor excitation sequences, and slow rotation algorithms. To improve our 

stepper charging algorithm, we implemented arrays containing the charge orders and iterated 

through it to activate the motor. Similar to how we handled the rotations originally, our early 

bucket stage contained nested switch statements which would first asses where the bucket 

needed to turn and then assessed where it currently was. Nested switch statements are inherently 

slow and cumbersome to deal with, so we created a lookup table that would take in the current 

position and target position as inputs and call the necessary rotate function. This effectively 

reduced the runtime of that section from O(n2) at worst case, to O(1).   

The next level of optimization the group decided to address was continuous loading. After many 

failed attempts at this issue, including changing the order of interrupts and creating many flags, it 

was discovered that the only solution was to have the sorting and enqueuing of materials take 

place within the reflective sensor ISR. Without doing so, the code was attempting to run at two 

different places in main simultaneously, the reflective stage and the bucket stage. By removing 
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the reflective stage and handling the operations within the interrupt, we were able to achieve 

continuous loading.  

The final level of optimization that the group decided to undertake was implementing a “look 

ahead” feature. The idea of this feature is to look ahead at the list, before pieces reach the exit 

sensor, and adjust the algorithm to sort the pieces more efficiently. Specifically, we wanted to 

replace consecutive, same-direction 90 degree turns with a continuous turn and multiple pre-

drops. This would save considerable time as the stepper acceleration and deceleration is much 

slower than continuing at peak speed. Looking ahead at the list and determining if the next 

couple turns are going to be same direction 90 degree turns was fairly straightforward and just 

involved creating a lookup table which takes in a start position and end position and returns the 

magnitude and direction of the required turn. Similarly, dropping multiple pieces during a single 

rotation was quite simple although tuning the pre-drops is quite tedious, and the dropDone 

variable was created to keep track of how many pieces were dropped so they could be processed 

in the bucket stage. The main obstacle with this feature is determining the spacing between 

pieces and if they will be close enough for the pre-drops to land in the bins. Because the pieces 

are loaded by hand, consistent spacing cannot be guaranteed. The solution we came up with was 

to check whether there was a piece at the exit sensor ready to be dropped as late as possible. We 

first implemented this with just two consecutive 90 degree rotations replaced by a 180 with two 

drops. The s-curve the group was using required 17 steps to decelerate safely from top speed, 

therefore we checked if there was an exit sensor flag present 17 steps before the single 90 degree 

turn was completed. If an exit flag was present, then the algorithm continued with its 180 degree 

rotation and completed the two drops. If there was no exit flag present, the gap was determined 
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to be too large and the double drop would not be successful, at which point the bailout_flag was 

set to one. At the next iteration of the stepper rotation for loop, the step delay would then call the 

value from our 90 degree (50 step) array thus commencing the deceleration and not dropping a 

second piece. This idea was then scaled to 270 and 360 degrees for more consecutive turns. With 

more turns, we had to keep track of which drop the bailout was happening at to know which 

array to switch to for deceleration. The bailout flag was set to 1 if the second piece had too much 

of a gap, 2 if the third piece had too much of a gap, and so forth. The stepper delay was then 

pulled from the correct array by using a switch statement with the bailout flag as input. On the 

last step of the array being used, if a bailout flag was present, a breakout flag (breakout_flag) 

was set to 1 and the function would break from the for loop.  

The look ahead feature could have easily been scaled further to include cases for back to back 

180s being replaced by a 360 with two drops, or a 90 and 180 being replaced with a 270, or any 

other of the countless possible combinations. However, we had our hands full trying to sort out 

hardware issues, and faulty sensors, so we decided to stick with what we had and tune in the pre-

drops. 

4 System Limitations and Performance Trade-offs 

The optimization of the sorting system involved encountering several limitations and making 

trade-offs between speed and reliability. This section will first address the system's limitations, 

followed by a discussion of the trade-offs made during the optimization process. 
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4.1 System Limitations 

During system optimization, several limitations were identified that could not be exceeded. The 

first limitation was the conveyor belt speed. At duty cycles exceeding approximately 72.5%, 

Steel items would fly off the belt upon reaching the exit sensor. This occurred because the inertia 

of the items surpassed the frictional force holding them in place. Notably, this issue was unique 

to Steel items as their mass was significantly greater than the others and as such they had much 

more momentum. 

Additionally, significantly increasing the belt speed reduced the accuracy of the reflectivity 

measurements. This was due to fewer ADC conversions performed at higher speeds compared to 

slower ones. Consequently, the belt speed was constrained by both the risk of items falling off 

the conveyor and the need to maintain accurate reflectivity readings. 

The next major limitation observed was in the stepper acceleration profile. When weight was 

added to the tray, simulating steel and aluminum pieces being trapped in the black or white tray. 

Using this approach, the maximum stepper delay, which is used to start the stepper from a 

standstill, and the minimum stepper delay, which is applied once the stepper has fully 

accelerated, were determined experimentally. When the maximum stepper delay was reduced 

below 15 ms, it was observed that the stepper would often stall during direction changes. 

Additionally, if a heavier item, such as steel or aluminum, fell onto the stepper during rotation, 

the impact would frequently cause the stepper to stall. Therefore, 15 ms was determined to be the 

lowest viable maximum stepper delay. 
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Similarly, when the minimum stepper delay was reduced below 4.5 ms, the stepper would 

occasionally stall, depending on direction changes and the load. While the below 4.5 ms delay 

resulted in an extremely fast stepper, it would often stall under the standard load conditions used 

during testing. Therefore the s-curve profile could be much more aggressive but with higher risk 

of stalling, as such, the group opted for a safer profile that was consistent.  

4.2 System Trade-offs 

During the optimization of the sorting system, various performance trade-offs were encountered 

and analyzed to achieve a fast, reliable, and accurate system. The maximum values discussed in 

the system limitations served as the foundation for the integrated system design, with each major 

parameter being adjusted to operate at the fastest stable value. Some parameters, such as belt 

speed and pre-drop location, did not involve trade-offs but instead had inherent limitations, as 

explained in the previous section. These parameters did not impact other system functionalities 

and were optimized independently. However, this level of independence did not apply to all 

parameters. 

Parameters such as the minimum and maximum stepper delays were interdependent with other 

system functionalities, necessitating the analysis of performance trade-offs. A key trade-off 

encountered was the reduction in the stepper's acceleration profile to incorporate the pre-drop 

functionality. Since the stepper did not come to a complete stop using this method, the initial 

stepper delay had to be significantly increased to generate enough torque to overcome the inertia 

of the sorting tray, particularly during direction changes 
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5 Testing and Calibration Procedures 

This section outlines the testing and calibration procedures conducted to ensure the accuracy of 

the system. 

5.1 Reflectivity Calibration 

The item type was identified using a reflectivity sensor. A 10-bit ADC converted the analog 

signal into a digital signal ranging from 0 to 1023. To classify items, the ADC output was 

compared to predefined reference values obtained through testing. A testing program was used to 

display the maximum ADC output for each item on an LCD. Each item type was scanned 

approximately 20 times to ensure a sufficient sample size, and the minimum and maximum 

reflective index (RFI) values were recorded. 

Since there were four objects, three threshold values were determined to classify them 

effectively. These thresholds were calculated as the midpoints between the maximum RFI of the 

smaller reflective index and the minimum RFI of the larger reflective index. For example, during 

the demonstration, the minimum RFI for black was 930, while the maximum RFI for white was 

920. To reduce classification errors, items with an RFI greater than 924 were categorized as 

black. Table 1 summarizes the finalized RFI thresholds used during the demonstration. 

Table 1 Reflective Index Sorting Values 

Type Minimum Reflective Index 
Black 925 
White 750 
Steel 120 
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5.2 Maximum Belt Speed 

The primary concern with increasing the belt speed was potential errors in sorting due to ADC 

timing issues. To evaluate this, a test was conducted by placing two sets of eight pieces on the 

belt and observing whether errors occurred at higher belt speeds. Surprisingly, the limiting factor 

was not the ADC timing but the position of the first piece in the stack. 

If a Steel piece was at the start of the stack, the belt occasionally had to pause while waiting for 

the stepper motor to reach its correct position. During this pause, the Steel piece sometimes fell 

off before being sorted accurately. To address this, the belt speed was set to 50% of its maximum 

speed, which was found to be a stable value that prevented this error. However, further increases 

in belt speed disregarding the Steel-related issue did result in ADC timing errors. 

 

5.3 Stepper Motor: S-Curve 

After optimizing the trapezoidal velocity profile, an S-curve profile, illustrated in Figure 41, was 

implemented to account for the identified stepper motor limitations. 
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Figure 41 Standard S-Curve Profile 

The equation used to construct the S-curve profile is presented in Figure 42. 

 

Figure 42 S-Curve Equation 

The coil delays were optimized through extensive testing, with the maximum and minimum 

delays set to 15 ms and 4.5 ms, respectively. The parameter ‘x0’ represents the mean of the time 

intervals and shifts the curve horizontally. The parameter ‘k’ adjusts the steepness of the curve, 

with larger values resulting in a steeper slope. Meanwhile, the parameter ‘a’ also influences the 

curve's shape, with lower values producing a gentler slope. Table 2 details the finalized 

parameters resulting in the fastest sort time while having no rotational errors.  
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Table 2 Finalized S-Curve Parameters 

S-Curve Parameters Value 
Maximum Delay [ms] 15 
Minimum Delay [ms] 4.5 

x0 6 
k 0.5 
a 2 

Figure 43 details the acceleration profile with the above specifications. The curve in figure 43 

shows the time delay vs step which it should be noted is inversely proportional to speed. If speed 

were plotted against the steps the curve would be flipped. 

 

Figure 43 Delay between Stepper Motor Steps vs. Steps 
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5.4 Noise Reduction 

Noise interference from the DC motor and other electrical appliances affected the performance of 

the optical sensor and exit sensor. To mitigate this issue, we implemented a filter circuit to 

suppress the noise and stabilize the sensor signals. For the exit sensor, we added a capacitor in 

parallel with a 47 kΩ resistor, forming a low-pass filter to attenuate high-frequency noise. For the 

optical sensor, we introduced a 47 kΩ resistor, which helped stabilize the signal by reducing 

susceptibility to electrical interference. These modifications significantly improved the reliability 

and accuracy of the sensor readings, ensuring consistent performance despite the presence of 

electrical noise sources. 

6 Demonstration Results 

The system's performance during a demonstration is evaluated using the 'System Performance 

Index' (SPI). This index accounts for both the total sort time and the number of errors. The SPI is 

calculated using the following formula:  

𝑆𝑃𝐼 =
𝑁9 − 𝑁:

𝑇  

Where 𝑁9  is the number of correctly sorted items, 𝑁: is the number of incorrectly sorted items 

and T is the time it took to sort all items. Table 3 details the demonstration results. The best test 

was a sort time of 22 [s] and zero errors, resulting in a SPI of 2.18. 
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Table 3 Demonstration Results 

Test # Sort Time [s] # of Errors SPI 
1 22 0 2.18 
2 22 1 2.09 
3 22 1 2.09 
4 21 2 2.1 

 

7 Experience and Recommendations 

The following section offers a comprehensive discussion of the project team's experiences and 

recommendations. 

7.1 Project Experience 

This project exceeded all expectations the team had at the outset of the course. Initially, the 

project seemed daunting, especially since the team was not explicitly skilled in coding. However, 

throughout the five instructional labs, the team rapidly gained confidence in writing, reading, and 

understanding code, transforming what seemed like a challenging task into a manageable and 

rewarding experience. The project served as an excellent introduction to mechatronic systems, 

sparking both interest and curiosity in the field of mechatronics. Throughout the process, both 

team members gained confidence in their coding abilities and became proficient in debugging. 

This skill was particularly crucial, as the first iteration of a new block of code rarely worked as 

expected. Additionally, the team developed a strong understanding of troubleshooting hardware 

and circuitry. By the project's conclusion, the team was able to quickly pinpoint errors in the 

system using a systematic troubleshooting routine. Ultimately, the experience not only boosted 
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the team’s confidence in working with both circuitry and software but also provided invaluable 

knowledge in mechatronic systems that will be carried forward into their future careers in 

industry. 

7.2 Project Recommendations 

While the team’s experience with the project was overwhelmingly positive, several 

recommendations could enhance the experience for future students. 

The first recommendation is to design a simple enclosure for all wiring and circuitry that is not 

meant to be modified by the students. Throughout the project, the team encountered system 

errors caused by loose wires, often due to the apparatus being accidentally disturbed by students 

or objects falling off the sorting tray. A simple enclosure to secure these components would 

significantly improve the experience by reducing the time spent troubleshooting unintentional 

wiring issues. 

The second recommendation involves reducing the reliance on human skill for loading the 

conveyor belt. Given the high speed of the belt, accurately and reliably placing 8 objects at a 

time proved to be extremely challenging. Perfecting this manual technique took significant time 

away from optimizing the system. Automating the loading process would eliminate the human 

error factor. A simple dropping mechanism, such as a solenoid actuator to release the pieces, 

could be designed to load the objects in a controlled manner. This addition would create an 

additional challenge for students, as the loading process would need to be synchronized with the 
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sorting system. Implementing this feature would be relatively straightforward and could serve as 

a design project for either ENGR110 students or co-op students. 

Lastly, it is recommended to provide greater incentives for optimizing the system. Currently, the 

difference in project grades between teams with a sorting time of 50 seconds versus one of 25 

seconds is only a 6% increase, despite the significant difference in the time and effort required to 

achieve faster sorting times. Teams that spend 50 hours optimizing their system may only gain a 

small grade advantage compared to teams that spend considerably less time. Increasing the 

weight of system optimization in the grading rubric would create more motivation for teams to 

invest additional time and effort into improving their designs. Attempting to improve the code 

and implement optimizations is where the group learned the most. At the beginning of the class 

no one in the group was confident in coding or had experience with microcontrollers of any kind, 

and by the end achieved one of the top times and were able to help other groups debug and 

improve their code. This was due to countless hours spent trying to optimize our program, and a 

greater grade weight incentive would encourage all students to do so and could improve the 

overall learning experience for students. While our team greatly enjoyed the project and wanted 

to learn the required skills, if we hadn’t, it would have been easy to “scrape by” with minimal 

effort and still receive a good grade.  

8 Conclusion 

The primary goal of this project was to design, code, and optimize the software and control 

system for the conveyor belt sorting system. Each system requirement was thoroughly analyzed 

before proceeding with the integrated system design. After developing an initial working version 
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of the sorting system, extensive testing was conducted to identify the system's maximum and 

stable operating parameters. These parameters served as a foundation for optimization, and the 

performance trade-offs of each were carefully evaluated. Once the initial code was fully 

optimized, additional functionality was integrated, and the optimization process was repeated. 

This cycle was completed three times, with the final code set achieving a completion time of 22 

seconds and no errors. The project provided the team with invaluable experience in mechatronic 

systems, equipping us with skills and knowledge that will be carried forward beyond graduation. 
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